NGSS correlations to Student Climate Data Learning Sequences.

How thoroughly the standard is addressed depends on the level of inquiry used with students.

Student Climate Data & NGSS: High School

Biomass Learning Sequence

HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

Biome Learning Sequence

HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]
Albedo Learning Sequence

HS- ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]

Vegetation Learning Sequence

See science practices for alignment.

Weather to Climate Learning Sequence

HS- ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

ESS2.D: Weather and Climate

• Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere.
Science and Engineering Practices in Student Climate Data Materials: High School

All Student Climate Data materials heavily emphasize the Science and Engineering Practices. All Learning Sequences address the following practices unless otherwise noted:

Asking Questions and Defining Problems

• Ask questions
 o that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.
 o that arise from examining models or a theory, to clarify and/or seek additional information and relationships.
 o to determine relationships, including quantitative relationships, between independent and dependent variables.
• Evaluate a question to determine whether it is testable or relevant.
• Ask questions that can be investigated within the scope of the school laboratory, research facilities, or field (e.g., outdoor environment) with available resources and, when appropriate, frame a hypothesis based on a model or theory.

Developing and Using Models (Biomass Learning Sequence)

• Develop a complex model that allows for manipulation and testing of a proposed process or system.
• Develop and/or use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems, and/or solve problems.

Obtaining, evaluating, and communicating information

• Compare, integrate and evaluate sources of information presented in different media or formats (e.g., visually, quantitatively) as well as in words in order to address a scientific question or solve a problem.
• Communicate scientific and/or technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (i.e., orally, graphically, textually, mathematically).

Planning and Carrying Out Investigations

• Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
• Select appropriate tools to collect, record, analyze, and evaluate data.

Analyzing and Interpreting Data
• Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.

• Consider limitations of data analysis (e.g., measurement error, sample selection) when analyzing and interpreting data.

Using Mathematics and Computational Thinking

• Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.

Constructing Explanations and Designing Solutions

• Make a quantitative and/or qualitative claim regarding the relationship between dependent and independent variables.

• Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

• Apply scientific ideas, principles, and/or evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects.

• Apply scientific reasoning, theory, and/or models to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion.

Engaging in Argument from Evidence

• Construct an oral and written argument or counter-arguments based on data and evidence.

• Make and defend a claim based on evidence about the natural world or the effectiveness of a design solution that reflects scientific knowledge and student-generated evidence.

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

• Science investigations use diverse methods and do not always use the same set of procedures to obtain data.

• New technologies advance scientific knowledge.

Scientific Knowledge is Based on Empirical Evidence

• Science knowledge is based on empirical evidence.

• Science arguments are strengthened by multiple lines of evidence supporting a single explanation.
Student Climate Data & NGSS: Middle School

Note: Not all Learning Sequences are appropriate for the Middle School level. Choose the parts that are most relevant to your classroom and curriculum.

All Learning Sequences address these standards:

ESS2.D: Weather and Climate
- Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. (MS-ESS2-6)
- Because these patterns are so complex, weather can only be predicted probabilistically. (MS-ESS2-5)

ESS3.D: Global Climate Change
- Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities. (MS-ESS3-5)

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]

Tree Atlas and Vegetation Learning Sequence also addresses:

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
Science and Engineering Practices in Student Climate Data Materials: Middle School

All Student Climate Data materials heavily emphasize the Science and Engineering Practices. All Learning Sequences address the following practices:

Asking Questions and Defining Problems
- Ask questions to identify and clarify evidence of an argument.

Planning and Carrying Out Investigations
- Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.

Analyzing and Interpreting Data
- Analyze and interpret data to provide evidence for phenomena.
- Analyze and interpret data to determine similarities and differences in findings.

Constructing Explanations and Designing Solutions
- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.
- Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena.

Engaging in Argument from Evidence
- Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.